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1 Motivation, history

Let αS : N → S1 be Steinahus (completely multiplicative), αS : N → {−1, 0, 1} be Rademacher.
Original motivation: αR models µ. RH is

∑
n≤x µ(n) ≪ x1/2+ε. Wintner (1944) proved

∑
n≤x αR(n) ≪ x1/2+ε

holds almost surely for all x.
It is expected that αR misses some properties of µ. E.g.

∑
n≤x µ(n) = O(

√
x(log log log x)5/4) is expected (Gonek)

while Harper proved that if V (x) → ∞ then
∑

n≤x αR(n) ≥
√
x(log log x)1/4/V (x) for infinitely many x a.s. On

the other hand, αS is the large-T limit of (nit)t≤T and the large-q limit of (χ mod q), e.g.∑
n≤x

nit d−−→
∑
n≤x

αS(n)

as T → ∞ (since (pit)p≤x
d−−→ (αS(p))p≤x; here t is uniform in [0, T ]). And we certainly want to understand such

sums – they build up ζ.
Significant work on moments of

∑
n≤x αS(n) and law of iterated logarithm (Halász, Erdős, Lau-Tenenbaum-Wu,

Basquin, Harper, Caich). Focus of this talk: distribution.
The distribution of

∑
n≤x αS(n), appropriately normalized is still not known, but very recently a precise conjecture

was stated (2024). Harper’s work (2017) shows that normalizing by standard deviation gives trivial limiting
distribution (Helson), and that ‘true’ normalization is by

√
x/(log log x)1/4. This relates to critical multiplicative

chaos. Lots of activity on variants: ∑
n≤x

αS(n)f(n).

E.g. very recently (2025), Hardy proved a version of the conjecture where f(n) = 1P (n)>
√
n. Most works, until

Hardy’s, focused on much ‘sparser’ f , where correct normalization turns out to be standard deviation, and
limiting distribution was standard Gaussian:

1. f(n) = 1ω(n)=k: Hough, Harper. k = o(log log x). The sum has length x/ log1+o(1) x.

2. f(n) = 1[x,x+H]: Chatterjee–Sound (H = o(x/ log x)), Sound–Xu (H ≤ x/(log x)2 log 2−1+ε), Pandey–Wang–

Xu (H ≪A x/ logA x for every A > 0), Harper–Sound–Xu.

3. f(n) = 1Q(Z): Najnudel, Klurman–Shkredov–Xu, Wang–Xu, Chinis–Shala.

None of these f are multiplicative.

2 Work with Wong

Motivated by works of Najnudel–Paquette–Sim, Mo Dick Wong and I considered

Sx := (
∑
n≤x

|f(n)|2)−1/2
∑
n≤x

αS(n)f(n)

for multiplicative f , with |f(p)|2 equal to θ ∈ (0, 1/2) on average; recently extended to |f(p)|2 equal to θ ∈ (0, 1)
on average, inspired by ideas in Najnudel–Paquetee–Simm–Vu. So cannot cover f ≡ 1, but can take e.g. indicator
of sums of two squares. In fact, f does not have to be bounded, f(p) can infinitely often be as large as p1/2+o(1)

(
∑

p |f(p)|3 log
C p/p3/2 < ∞). If f takes the values 0 and 1 only, its support is ≍ x(log x)θ−1
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What is the limiting distribution we found? G ·
√
V for standard complex Gaussian G independent of V , and

V = 1/(2π)
∫
R |1/2 + it|−2m∞(dt). Here m∞ is a random measure, translation-invariant, constructed by a limit

from a sequence of measures involving α and f . We use the notation G for standard complex Gaussian throughout.
This talk will not be about m∞ (see Mo Dick’s talk for that), but about how one connects the random sum
with the random measure.
One approach for this is through moments. It is not relevant here because the moments of V explode: EV p

is finite iff p < 1/θ, which forces E|Sx|2p to diverge for p ≥ 1/θ (recall that if Xn
d−−→ X in distribution then

lim inf E|Xn|2p ≥ E|X|2p by Fatou’s lemma.)
Next approach is martingale CLT, introduced into this area by Harper (2010). Why martingales?

Sx =
∑
p≤x

Zp,x

where
Zp,x := (

∑
n≤x

|f(n)|2)−1/2
∑

n≤x, P (n)=p

αS(n)f(n).

If we define filtrations Fp− = σ((α(q) : q < p) then E[Zp,x | Fp− ] = 0 (essentially conditioning of values of α(q) for
q < p.) Let

Vx =
∑
p≤x

|Zp,x|2.

Informally, Sx ≈ G
√
Vx. Formally, McLeish CLT makes this formal in a special case: if EVx → 1, EV 2

x → 1, and∑
p≤x E|Zp,x|4 → 0, then Sx

d−−→ G. Note that these conditions imply Vx
p−−→ 1. First condition is trivial: EVx = 1

regardless of f . (Alternative to EV 2
x → 1 is E|Sx|4 → 2; see Sound–Xu.)

This CLT is not relevant if limiting distribution is not Gaussian, so we turn to the general form of martingale CLT.
We define

BPx :=
∑
p≤x

E[|Zp,x|2 | Fp− ].

If BPx
p−−→ V ,

∑
p≤x E|Zp,x|4 → 0 and

∑
p≤x E[Z2

p,x | Fp− ]
d−−→ 0, then Sx

d−−→ G
√
V . Rest of the talk will be

about BPx
p−−→ V – other conditions are ‘trivial’ to verify, even in critical case (e.g.

∑
p≤x E[Z2

p,x | Fp− ] ≡ 0).

3 Two approaches to bracket process

It is convenient to assume that f is supported on squarefrees. Moreover, we shall only talk about Steinhaus (we
put α = αS). We suppose

∑
p≤x |f(p)|2 ∼ θLi(x). First step is to understand how BPx looks like. Note that

Zp,x = (
∑
n≤x

|f(n)|2)−1/2α(p)f(p)
∑

m≤x/p, P (m)<p

α(m)f(m)

so
E[|Zp,x|2 | Fp− ] = (

∑
n≤x

|f(n)|2)−1|f(p)|2|
∑

m≤x/p, P (m)<p

α(m)f(m)|2.

This shows
BPx = (

∑
n≤x

|f(n)|2)−1
∑
p≤x

|f(p)|2|
∑

m≤x/p, P (m)<p

α(m)f(m)|2.

We introduce
st,x := t−1/2

∑
n≤t, P (n)<x

α(n)f(n)

so that

BPx =
x∑

n≤x |f(n)|2
∑
p≤x

|f(p)|2

p
|sx/p,p|2.

It is useful to massage BPx a little: since F (x) =
∑

p≤x |f(p)|2/p ∼ θ log log x then, informally,

BPx ≈ x∑
n≤x |f(n)|2

∫ x

2−
|sx/t,t|2dF (t) ∼ θ

x∑
n≤x |f(n)|2

∫ x

2−

|sx/t,t|2

t log t
dt. (1)
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There are now (at least) two rather different approaches relating this to the measure m∞. Both approaches employ
the following form of Plancherel’s identity:∫

R
|
∑
n≤t

g(n)|2t−2−2rdt =
1

2π

∫
R
|
∑
n

g(n)n−1/2−r−it|2|1/2 + r + it|−2dt (2)

holds for r > 0, a.s. Proof: Through Perron.
First argument. We introduce

Ux := (
∑
n≤x

|f(n)|2/n)−1

∫ x

1

|st,∞|2 dt
t
.

We combine two lemmas:

Ux
p−−→ 1

2π

∫
R
|1/2 + it|−2m∞(dt) (3)

and
E|Ux −BPx|2 → 0 (4)

The statement (4) is proved by a straightforward technical computation, but isn’t deep. The statement (3) is also

not too deep (given the construction(s) of m∞). Perhaps the difficult part is guessing that BPx
p−−→ 1

2π

∫
R |1/2 +

it|−2m∞(dt), which is motivated by Plancherel.
To prove (4) one expands the square and computes three expectation using Eα(n)α(m) = δn,m. This leads to

summing solutions to ab = cd with certain weights and constraints. Here it is useful to mention some facts:

� Solutions to ab = cd are given by a = n1n2, b = n3n4, c = n1n3, d = n2n4. Proof: let g1 = (a, c) g2 = (b, d)
and define a′, b′, c′, d′ accordingly to get a′b′ = c′d′ with (a′, c′) = 1 and (b′, d′) = 1. Then a′ = d′ and b′ = c′

forcing a = g1a, b = g2b
′, c = g1b

′, d = g2a
′.

� De Bruijn–van Lint:
∑

n≤x, P (n)≤y |f(n)|2 ∼
∑

n≤x |f(n)|2 · ρθ(
log x
log y ) holds in the regime log y ≍ log x.

� Wirsing:
∑

n≤x |f(n)|2 ∼ Cfx(log x)
θ−1 if |f(p)|2 ∼ θ on average.

Let us expand on (3). Notation:

mx(dt) = |A(1/2 + 1/(2 log x) + it)|2dt/E|A(1/2 + 1/(2 log x) + it)|2

where A(s) =
∑

n f(n)/n
s. The measure m∞(dt) is constructed by taking limx mx(dt). Note that

E|A(1/2 + r/2 + it)|2 = E|
∑
n

α(n)f(n)/n1/2+r/2+it|2 =
∑
n

|f(n)|2/n1+r

is independent of t. So, for r = 1/ log x, Plancherel implies that∫
R
|st,∞|2t−1−1/ log xdt =

1

2π

∫
R
|A(1/2 + 1/(2 log x) + it)|2|1/2 + 1/2(1/ log x) + it|−2dt

=
1

2π
(
∑
n

|f(n)|2/n1+1/ log x)

∫
R
|1/2 + 1/(2 log x) + it|−2mx(dt).

From Wirsing,
∑

n |f(n)|2/n1+1/ log x ∼ CfΓ(θ)(log x)
θ. From consequences of Plancherel and Wirsing,

(CfΓ(θ)(log x)
θ)−1

∫
R
|st,∞|2t−1−1/ log xdt

p−−→ 1

2π

∫
R
|1/2 + it|−2m∞(dt).

(Here we relied on mx(I)
p−−→ m∞(I).) By Tauberian theorem (basically, approximating 1t≤x by P (t−1/ log x)), this

implies that

(CfΓ(θ)(log x)
θ)−1

∫ x

1

|st,∞|2 dt
t

p−−→ 1

Γ(1 + θ)

1

2π

∫
R
|1/2 + it|−2m∞(dt)

as needed. (In Ux we divide by
∑

n≤x |f(n)|2/n, which is asymptotic to Cf (log x)
θ/θ by Wirsing.)
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Second argument. Some notation:

my,x(dt) = |Ay(1/2 + it+ 1/(2 log x))|2dt/E|Ay(1/2 + it+ 1/(2 log x))|2

where Ay(s) =
∑

P (n)<y f(n)/n
s. Recall (1). From Plancherel’s identity, we may obtain the limit of a somewhat

similar expression, namely

x
(∑
n≤x

|f(n)|2
)−1

∫ ∞

0

q(t1/ log x)
|sx/t,xa |2dt

t log x
(5)

for any fixed a > 0 and any ‘nice’ function q. Details: Plancherel implies that∫
R
|st,y|2t−1− r

log y dt =
1

2π

∫
R

∣∣Ay

(1
2
+

r

2 log y
+ it

)
|2|1

2
+

r

2 log y
+ it|−2dt

= E|Ay(
1

2
+

r

2 log y
)|2 · 1

2π

∫
R
|1
2
+

r

2 log y
+ it|−2my,y1/r (dt)

holds for r > 0 so ( ∑
P (n)<y

|f(n)|2

n1+r/ log y

)−1 ∫ ∞

0

|st,y|2dt
t1+r/ log y

p−−−→
y→∞

V ;

now substitute t = x/t and y = xa. This gives (5) with q(z) = zr/a. Here we rely on mx,y(I)
p−−→ m∞(I) if

x, y → ∞ together. The main difference between (1) and (5), however, is that in (5) the ‘smoothness parameter’ in
sx/t,xa , namely xa, does not depend on the integration variable t, while in (1) the smoothness parameter in sx/t,t
is t, the integration variable itself.

To circumvent this issue, we modify Sx. We divide the primes in [2, x] into finitely many disjoint intervals (Ik)k,
and if n ≤ x has P (n) ∈ Ik, we ‘keep’ this n in the modified version of Sx only if P (n/P (n)) (the second largest
prime factor of n) is smaller than min Ik. In this way, the new Sx is

S′
x =

∑
p≤x

Z ′
p,x

where, if p ∈ Ik, then

Z ′
p,x := (

∑
n≤x

|f(n)|2)−1/2
∑

n≤x, P (n)=p, P (n/P (n))<min Ik

α(n)f(n)

and the new bracket process takes the shape

BP ′
x ≈ x

(∑
n≤x

|f(n)|2
)−1 ∑

k

∑
p∈Ik

|f(p)|2

p
|sx/p,min Ik |

2 ≈ x
(∑
n≤x

|f(n)|2
)−1 ∑

k

∫ x

2

|sx/t,min Ik |2dt
t log t

.

For fixed k, the smoothness parameter is now fixed within the integral, namely it is min Ik. This allows us to
handle the kth integral using (5). One has to justify working with this modified Sx. The idea is that the second
moment of the discarded terms is∑

k

∑
n≤x:P (n),P (n/P (n))∈Ik

|f(n)|2∑
n≤x |f(n)|2

≪
∑
k

∑
p,q∈Ik

1

pq
≪

∑
k

(log(logmax Ik/ logmin Ik))
2.

We discard also P (n) ≤ xε (we lose O(ε)) and then take Ik = [xε+δk, xε+δ(k+1)], so that the summand is ≪
log2((ε+ δ(k + 1))/(ε+ δk)) ≪ min{δ/ε, 1/k}2 and this is good enough; the total loss is Oε(δ) + O(ε) and this is
manageable if we take δ to 0 and then ε to 0.

4


	Motivation, history
	Work with Wong
	Two approaches to bracket process

