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1 Definition and motivation

A positive integer n is said to be y-smooth if its primes factors do not exceed y: p | n =⇒ p ≤ y. The talk
will be concerned with the counting function

Ψ(x, y) := #{n ≤ x : n is y-smooth}.

Note Ψ(x, x) = ⌊x⌋, Ψ(x, 1) = 1 and Ψ(x, 2) = 1 + ⌊log2 x⌋, and that the indicator function of y-smooth
numbers is completely multiplicative.

One can define an analogous quantity in the polynomial setting. A polynomial f ∈ Fq[T ] is said to be
m-smooth if its irreducible factors have degrees bounded by m: P | f =⇒ deg(P ) ≤ m. The talk will be
focused today mostly on Ψ(x, y).

Smooth numbers play an important role in cryptography. Pomerance, in the 80s, devised his Quadratic
Sieve, an algorithm that (heuristically) factors integers in subexponential time, namely n is factored in
exp((log n)1/2+o(1)) time. We describe it (in a loose way) below.

For i = 1, 2, . . . we do the following. We take xi := ⌊
√
n⌋+ i, square it and reduce it modulo n to obtain

a number yi in [0, n− 1]:
x2i ≡ yi mod n.

We then check whether yi is T -smooth – this can be done in O(T ) operations obviously, but happens
quite rarely: with probability (Ψ(N,T )/N)−1 the number yi will be T -smooth (heuristically). When it is
T -smooth, we obtain a relation of the form

x2i ≡
∏
p≤T

pei,p mod n.

We want to obtain T such relations, which takes T 2 × (Ψ(N,T )/N)−1 operations. Then we can perform
Gaussian elimination on the T binary vectors {(ei,p2 mod 2)p≤T }i∈S where S corresponds to yi that are
T -smooth. The complexity of Gaussian elimination is T 3. It finds subset(s) S′ ⊆ S such that∑

i∈S′

(ei,p)p≤T ≡ 0 mod 2

as vectors in
∏

p≤T F2. This means ∏
i∈S′

x2i ≡
∏
p≤T

p2bp mod n

for bp =
∑

i∈S′ ei,p/2. Given a relation A2 ≡ B2 mod n we can compute gcd(A−B,n) and hope to find one
the factors of n.

The complexity of this algorithm is T 2 × (Ψ(N,T )/N)−1 + T 3, and is minimized when

T ≈ N/Ψ(N,T )

which turn out to be solved for
T = exp((logN)1/2+o(1))

which is also the total complexity.
This uses the relation Ψ(N,T ) ∼ Nρ(logN/ log T ) which was established in a wide range by Hildebrand,

where ρ is the Dickman function, which we discuss next.
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2 The Dickman function

The function ρ : [0,∞) → (0,∞) was introduced by Dickman. It has initial conditions ρ(u) = 1 for u ∈ [0, 1].
For larger u it is defined via delay-differential equation:

uρ′(u) + ρ(u− 1) = 0, or

ρ(u) = u−1

∫ 1

0

ρ(u− t)dt.

It is decreasing, and in fact we see it decreases rapidly:

ρ(u) ≤ u−1ρ(u− 1) =⇒ ρ(u) ≤ Γ(u+ 1)−1 = u−u(1+o(1)).

Dickman proved (30s) that Ψ(x, y) ∼ xρ(log x/ log y) for x ≥ y ≥ xε.
De Bruijn (50s) worked out precise asymptotics for ρ(u). To explain them we need to introduce the

Laplace transform of ρ:

ρ̂(s) :=

∫ ∞

0

e−stρ(t)dt.

De Bruijn showed

ρ̂(s) = exp

(
γ +

∫ −s

0

et − 1

t
dt

)
.

A short proof of this follows from differentiating ρ̂(s) under the integral sign:

ρ̂′(s) = −
∫ ∞

0

te−stρ(t)dt = −
∫ 1

0

te−stdt−
∫ ∞

1

(

∫ t

t−1

ρ(v)dv)e−stdt

= −
∫ ∞

0

ρ(v)(

∫ v+1

v

e−stdt)dv =
e−s − 1

s
ρ̂(s).

(This determines ρ̂ up to a multiplicative constant; see de Bruijn’s work for working out the constant.) For
any c ∈ R we have

ρ(u) =
1

2πi

∫
(−c)

esuρ̂(s)ds.

We choose c so that e−cuρ̂(−c) is minimized, i.e. c is the minimizer of

c 7→ −cu+ γ +

∫ c

0

et − 1

t
dt.

Differentiating (with respect to c) we find

−u+
ec − 1

c
= 0

So the optimal c is ξ(u) (a function of u) where ξ(u) ∼ log u is defined implicitly via

eξ − 1

ξ
= u.

Let us write

ρ(u) =
1

2πi

∫
(−ξ(u))

esuρ̂(s)ds = e−ξ(u)uρ̂(−ξ(u)) 1

2π

∫
R
G(t)dt

for
G(t) = eituρ̂(−ξ(u) + it)/ρ̂(−ξ(u)).

By construction G(0) = 1. By definition of ξ, G′(0) = 0. It is not hard to approximate G(t) as e−ut2(1+o(1))/2

for small t (details omitted; u(1 + o(1)) arises from (logG)′′(0)). We expect

ρ(u) =
1

2πi

∫
(−ξ(u))

esuρ̂(s)ds ∼ e−ξ(u)uρ̂(−ξ(u)) 1

2π

∫
R
e−ut2/2dt ∼ e−ξ(u)uρ̂(−ξ(u))√

2πu

and this asymptotic relation was established rigorously by de Bruijn. The quantity −ξ(u) is called the saddle
point for ρ(u).
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3 Hildebrand’s work

Let

u =
log x

log y
.

Hildebrand (80s) proved the following:

Ψ(x, y) = xρ(u)

(
1 +O

(
log(u+ 1)

log y

))
holds for x ≥ y ≥ exp((log log x)5/3+ε). Under RH he showed that

Ψ(x, y) = xρ(u) exp

(
O

(
log(u+ 1)

log y

))
(3.1)

holds for y ≥ (log x)2+ε. Note this does not give an asymptotic formula for y = (log x)C .
These two results admit alternative proofs due to Saias (80s). Hildebrand used a physical space argument

while Saias used Dirichlet series and complex analysis.
Two questions that were asked:

1. (Hildebrand) Can one show the asymptotic relation (3.1) fails for y ≤ (log x)2−ε?

2. (Pomerance) Is it true that Ψ(x, y) ≥ xρ(u) for all x/2 ≥ y ≥ 2? (Intuition: for very large y, there is a
lower order term in Ψ(x, y)− xρ(u), found by de Bruijn, which is positive. Moreover, xρ(u) ≤ Ψ(x, y)
for y ≤ log x trivially since Ψ(x, y) ≥ 1, xρ(u) < 1.)

Theorem 3.1 (G., 2022). Fix ε > 0. Unconditionally, there are sequences xn, yn → ∞ such that

yn = (log xn)
2−ε+o(1)

and
Ψ(xn, yn)

xnρ(log xn/ log yn)
= exp((log xn)

ε+o(1)).

Theorem 3.2 (G., 2022). Under RH, for (log x)1+ε ≤ y ≤ (log x)2−ε we have

Ψ(x, y)

xρ(log x/ log y)
= exp

(
Θ

(
(log x)2

y log y

))
.

An analogue of Theorem 3.2 holds unconditionally for polynomials. Here Θ(f) stands for a function g
such that C ≥ g/f ≥ c > 0 for some positive constants C, c.

Theorem 3.3 (G., 2022). 1. Unconditionally, Ψ(x, y) ≥ xρ(u) holds outside of

y ∈ [log x exp((log log x)3/5−ε), exp((log log x)5/3+ε)].

2. Under RH, Ψ(x, y) ≥ xρ(u) holds outside of

y ∈ [(log x)2−ε, (log x)2+ε].

3. Assume RH. If ψ(y) :=
∑

n≤y Λ(n) ∼ y satisfies ψ(y)− y = o(
√
y log y) then Ψ(x, y) ≥ xρ(u) holds for

y ∈ [(log x)2−ε, (log x)2+ε]. Some intuition comes from the relation

Ψ(x, y) ∼ xρ(u)(−ζ(1/2)
√
2) exp

(
ψ(y)− y
√
y log y

)
for y = (1 + (log x)/2)2 (RH is used in the derivation of this relation as well).

4. If RH fails, and Θ > 1/2 is the supremum of the real parts of zeros of ζ, then for any β ∈ (1−Θ,Θ)
there are sequences xn, yn with yn = (log xn)

1/(1−β)+o(1) such that

Ψ(xn, yn) < xnρ(log xn/ log yn) exp(−yΘ−β−ε
n ).
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4 First oscillation result

The rest of the talk will concentrate on Theorem 3.1 and the last part of Theorem 3.3.
Let us start with the last part of Theorem 3.3.1 Rankin (30s) observed that

Ψ(x, y) ≤ xcζ(c, y)

for any c > 0, where ζ(c, y) =
∏

p≤y(1− p−c)−1 is the partial zeta function. The optimal c, that minimizes
the RHS, is denoted α = α(x, y):

Ψ(x, y) ≤ xαζ(α, y) = min
c>0

xcζ(c, y).

Recall also that

ρ(u) ∼ e−ξ(u)uρ̂(−ξ(u))√
2πu

.

Our aim is to ‘marry’ two classical ideas: saddle point analysis and Landau’s Oscillation result (the same
result that allows one to deduce ψ(y)− y = Ω±(y

Θ−ε)).
We introduce

β = β(x, y) := 1− ξ(u)/ log y

where u = log x/ log y, which allows us to rewrite

xρ(u) ∼ xβ ρ̂(log y(β − 1))√
2πu

.

Now let’s divide Ψ(x, y) by xρ(u):

Ψ(x, y)

xρ(u)
≪

√
u

xαζ(α, y)

xβ ρ̂(log y(β − 1))
.

Here is a trivial (but new) observation. Since α minimizes the numerator we trivially have

Ψ(x, y)

xρ(u)
≪

√
u
xβζ(β, y)

xβ ρ̂(−ξ(u))
=

√
u
ζ(β, y)

ρ̂(−ξ(u))
.

Letting
F (s, y) := log ζ(s, y)− log ρ̂(log y(s− 1)),

we see
Ψ(x, y)

xρ(u)
≪

√
ueF (β,y).

By an earlier computation,
log ρ̂(log y(s− 1)) = γ + I((1− s) log y).

As for log ζ(s, y), we find

log ζ(s, y) =
∑
p≤y

− log(1− p−s) =
∑
n≤y

Λ(n)

ns log n
+ o(1)

if s ≥ 1/2 + ε. The o(1) terms come from proper prime powers. Since β = 1− ξ(u)/ log y ≈ 1− log u/ log y,
we certainly have s ≥ 1/2 + ε if y ≥ (log x)2+ε.

In summary: we want to show ∑
n≤y

Λ(n)

nβ log n
− I((1− β) log y)

1For simplicity we shall assume σ ∈ (1/2,Θ) (instead of σ ∈ (1−Θ,Θ)), and concentrate on y ≥ (log x)2+ε.
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can be ‘very’ negative if RH fails. Strategy: we fix β ∈ (1/2, 1), namely require 1− ξ(u)/ log y = β, which is
easy to solve:

ξ(u) = log y(1− β) =⇒

eξ(u) = 1 + uξ(u) = y1−β

and
1 + uξ(u) = 1 + u log y(1− β)

so
1 + log x(1− β) = y1−β

i.e.
y = (1 + log(1− β))1/(1−β).

Given a function A(x) on x ≥ 1, its Mellin transform is

MA(s) :=

∫ ∞

1

A(x)x−sds.

Landau proved the following.

Theorem 4.1. Suppose A(x) is a bounded integrable function on every interval [1, X], which is eventually
non-negative. Let σc be the infimum of σ such that MA(σ) converges. Then MA(s) is analytic in ℜ(s) > σc
but not at s = σc.

To illustrate, let us revisit the proof that ψ(x)− x < −xΘ−ε holds infinitely often, where Θ is as before.
Consider A(x) =

∑
n≤x Λ(n)− x+ xΘ−ε. Let us suppose A(x) is eventually positive. Not hard to show

MA(s) = − ζ ′(s− 1)

(s− 1)ζ(s− 1)
− 1

s− 2
+

1

s− 1−Θ+ ε
.

This function is analytic for real s > 1 + Θ − ε, but is not analytic at s = 1 + Θ − ε. Hence, by Landau,
MA(s) is analytic in the half-plane ℜ(s) > 1 + Θ− ε. But this is false – it is only analytic in ℜ(s) > 1 + Θ
due to zeros with real part > Θ− ε for any ε > 0; contradiction.

Another example: Diamond and Pintz (2009) showed∑
n≤x

Λ(n)

n log n
− log log x− γ < − C√

x log x

holds infinitely often for any given C > 0, and same with > C/(
√
x log x). This shows that

√
x(
∏

p≤x(1 −
1/p)−1 − eγ log x) exhibits arbitrarily large positive and negative values as x→ ∞. They studied the Mellin
transform of the LHS.

An almost identical argument works for showing

y 7→
∑
n≤y

Λ(n)

nβ log n
− I((1− β) log y) ≤ −yΘ−β−ε

holds infinitely often.
We conclude that if RH fails, and Θ > 1/2 is the supremum of the real parts of zeros of ζ, then for any

β ∈ (1/2,Θ) there are sequences xn, yn with yn = (log xn)
1/(1−β)+o(1) such that

Ψ(xn, yn) < xnρ(log xn/ log yn) exp(−yΘ−β−ε
n ).

If RH holds, Θ− β = 1/2− β < 0 so this is useless.

Remark 4.1. Under RH we can show that Ψ(x, y) ∼ xρ(u)F (β, y) holds for y ≥ (log x)3/2+ε and this range
is optimal. A similar result holds for polynomials over finite fields, unconditionally.
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5 Second oscillation result

Finally, let us turn to Theorem 3.1. We assume y ≤ (log x)2−ε, so that β ≤ 1/2− ε (and also α ≤ 1/2− ε:
it is known that α = β +O(1/ log y)).

We have seen
Ψ(x, y)

xρ(u)
≪

√
u
xαζ(α, y)

xβ ρ̂(−ξ(u))
≪

√
u
xβζ(β, y)

xβ ρ̂(−ξ(u))
=

√
u
ζ(β, y)

ρ̂(−ξ(u))
.

This used Ψ(x, y) ≤ xαζ(α, y). We also have Ψ(x, y) ≫ xαζ(α, y)/(
√
u log y) (Hildebrand and Tenenbaum,

80s) if y ≥ (log x)1+ε, so

Ψ(x, y)

xρ(u)
≫ xαζ(α, y)

xβ ρ̂(−ξ(u)) log y
≥ xαζ(α, y)

xαρ̂((1− α) log y) log y
=

ζ(α, y)

ρ̂((1− α) log y) log y
.

The second inequality is trivial (but new): it uses the fact that β minimizes s 7→ xsρ̂((1− s) log y). Recall

F (s, y) = log ζ(s, y)− log ρ̂(log y(s− 1)).

We have just shown
Ψ(x, y)

xρ(u)
≫ eF (α,y)/ log y.

Unconditionally, Landau’s Theorem shows that, if we fix α > 0,

y 7→
∑
n≤y

Λ(n)

nα log n
− I((1− α) log y)

is non-negative. When y ≤ (log x)2−ε we have that logF (α, y) is larger than
∑

n≤y
Λ(n)

nα logn by a very large

quantity, leading to large values of Ψ(x, y)/(xρ(u)). Indeed,

log ζ(s, y) =
∑
p≤y

− log(1− p−s) =
∑
n≤y

Λ(n)

ns log n
+

∑
k≥2

∑
y1/k<p≤y

p−ks/k.

The k-sum can easily be shown to tend to infinity when s ≤ 1/2− ε (this uses nothing more than the Prime
Number Theorem), which is the case when s = α and y ≤ (log x)2−ε.

6


	Definition and motivation
	The Dickman function
	Hildebrand's work
	First oscillation result
	Second oscillation result

