How many smooth numbers and smooth polynomials are there? ViBrANT Seminar, May 2, 2023

Ofir Gorodetsky

1 Definition and motivation

A positive integer n is said to be y-smooth if its primes factors do not exceed y: $p | n \implies p \leq y$. The talk will be concerned with the counting function

$$
\Psi(x, y) := \#\{n \le x : n \text{ is } y\text{-smooth}\}.
$$

Note $\Psi(x, x) = |x|, \Psi(x, 1) = 1$ and $\Psi(x, 2) = 1 + |\log_2 x|$, and that the indicator function of y-smooth numbers is completely multiplicative.

One can define an analogous quantity in the polynomial setting. A polynomial $f \in \mathbb{F}_q[T]$ is said to be m-smooth if its irreducible factors have degrees bounded by m: $P | f \implies \deg(P) \leq m$. The talk will be focused today mostly on $\Psi(x, y)$.

Smooth numbers play an important role in cryptography. Pomerance, in the 80s, devised his Quadratic Sieve, an algorithm that (heuristically) factors integers in subexponential time, namely n is factored in $\exp((\log n)^{1/2+o(1)})$ time. We describe it (in a loose way) below.

For $i = 1, 2, ...$ we do the following. We take $x_i := \lfloor \sqrt{n} \rfloor + i$, square it and reduce it modulo n to obtain a number y_i in $[0, n-1]$:

$$
x_i^2 \equiv y_i \bmod n.
$$

We then check whether y_i is T-smooth – this can be done in $O(T)$ operations obviously, but happens quite rarely: with probability $(\Psi(N,T)/N)^{-1}$ the number y_i will be T-smooth (heuristically). When it is T-smooth, we obtain a relation of the form

$$
x_i^2 \equiv \prod_{p \le T} p^{e_{i,p}} \bmod n.
$$

We want to obtain T such relations, which takes $T^2 \times (\Psi(N,T)/N)^{-1}$ operations. Then we can perform Gaussian elimination on the T **binary** vectors $\{(e_{i,p2} \mod 2)_{p\leq T}\}_{i\in S}$ where S corresponds to y_i that are T-smooth. The complexity of Gaussian elimination is T^3 . It finds subset(s) $S' \subseteq S$ such that

$$
\sum_{i\in S'} (e_{i,p})_{p\leq T}\equiv 0\bmod 2
$$

as vectors in $\prod_{p\leq T} \mathbb{F}_2$. This means

$$
\prod_{i \in S'} x_i^2 \equiv \prod_{p \le T} p^{2b_p} \bmod n
$$

for $b_p = \sum_{i \in S'} e_{i,p}/2$. Given a relation $A^2 \equiv B^2 \mod n$ we can compute $gcd(A - B, n)$ and hope to find one the factors of n.

The complexity of this algorithm is $T^2 \times (\Psi(N,T)/N)^{-1} + T^3$, and is minimized when

$$
T \approx N/\Psi(N, T)
$$

which turn out to be solved for

$$
T = \exp((\log N)^{1/2 + o(1)})
$$

which is also the total complexity.

This uses the relation $\Psi(N, T) \sim N \rho(\log N / \log T)$ which was established in a wide range by Hildebrand, where ρ is the Dickman function, which we discuss next.

2 The Dickman function

The function $\rho: [0, \infty) \to (0, \infty)$ was introduced by Dickman. It has initial conditions $\rho(u) = 1$ for $u \in [0, 1]$. For larger u it is defined via delay-differential equation:

$$
u\rho'(u) + \rho(u-1) = 0
$$
, or

$$
\rho(u) = u^{-1} \int_0^1 \rho(u-t) dt.
$$

It is decreasing, and in fact we see it decreases rapidly:

$$
\rho(u) \leq u^{-1} \rho(u-1) \implies \rho(u) \leq \Gamma(u+1)^{-1} = u^{-u(1+o(1))}
$$
.

Dickman proved (30s) that $\Psi(x, y) \sim x \rho(\log x / \log y)$ for $x \geq y \geq x^{\varepsilon}$.

De Bruijn (50s) worked out precise asymptotics for $\rho(u)$. To explain them we need to introduce the Laplace transform of ρ :

$$
\hat{\rho}(s) := \int_0^\infty e^{-st} \rho(t) dt.
$$

De Bruijn showed

$$
\hat{\rho}(s) = \exp\left(\gamma + \int_0^{-s} \frac{e^t - 1}{t} dt\right).
$$

A short proof of this follows from differentiating $\hat{\rho}(s)$ under the integral sign:

$$
\hat{\rho}'(s) = -\int_0^\infty t e^{-st} \rho(t) dt = -\int_0^1 t e^{-st} dt - \int_1^\infty (\int_{t-1}^t \rho(v) dv) e^{-st} dt
$$

$$
= -\int_0^\infty \rho(v) (\int_v^{v+1} e^{-st} dt) dv = \frac{e^{-s} - 1}{s} \hat{\rho}(s).
$$

(This determines $\hat{\rho}$ up to a multiplicative constant; see de Bruijn's work for working out the constant.) For any $c \in \mathbb{R}$ we have

$$
\rho(u) = \frac{1}{2\pi i} \int_{(-c)} e^{su} \hat{\rho}(s) ds.
$$

We choose c so that $e^{-cu}\hat{\rho}(-c)$ is minimized, i.e. c is the minimizer of

$$
c \mapsto -cu + \gamma + \int_0^c \frac{e^t - 1}{t} dt.
$$

Differentiating (with respect to c) we find

$$
-u+\frac{e^c-1}{c}=0
$$

So the optimal c is $\xi(u)$ (a function of u) where $\xi(u) \sim \log u$ is defined implicitly via

$$
\frac{e^{\xi}-1}{\xi}=u.
$$

Let us write

$$
\rho(u) = \frac{1}{2\pi i} \int_{(-\xi(u))} e^{su} \hat{\rho}(s) ds = e^{-\xi(u)u} \hat{\rho}(-\xi(u)) \frac{1}{2\pi} \int_{\mathbb{R}} G(t) dt
$$

for

$$
G(t) = e^{itu}\hat{\rho}(-\xi(u) + it)/\hat{\rho}(-\xi(u)).
$$

By construction $G(0) = 1$. By definition of ξ , $G'(0) = 0$. It is not hard to approximate $G(t)$ as $e^{-ut^2(1+o(1))/2}$ for small t (details omitted; $u(1+o(1))$ arises from $(\log G)''(0)$). We expect

$$
\rho(u) = \frac{1}{2\pi i} \int_{(-\xi(u))} e^{su} \hat{\rho}(s) ds \sim e^{-\xi(u)u} \hat{\rho}(-\xi(u)) \frac{1}{2\pi} \int_{\mathbb{R}} e^{-ut^2/2} dt \sim \frac{e^{-\xi(u)u} \hat{\rho}(-\xi(u))}{\sqrt{2\pi u}}
$$

and this asymptotic relation was established rigorously by de Bruijn. The quantity $-\xi(u)$ is called the *saddle point* for $\rho(u)$.

3 Hildebrand's work

Let

$$
u = \frac{\log x}{\log y}.
$$

Hildebrand (80s) proved the following:

$$
\Psi(x,y) = x\rho(u)\left(1 + O\left(\frac{\log(u+1)}{\log y}\right)\right)
$$

holds for $x \ge y \ge \exp((\log \log x)^{5/3+\epsilon})$. Under RH he showed that

$$
\Psi(x,y) = x\rho(u) \exp\left(O\left(\frac{\log(u+1)}{\log y}\right)\right) \tag{3.1}
$$

holds for $y \geq (\log x)^{2+\epsilon}$. Note this does not give an asymptotic formula for $y = (\log x)^C$.

These two results admit alternative proofs due to Saias (80s). Hildebrand used a physical space argument while Saias used Dirichlet series and complex analysis.

Two questions that were asked:

- 1. (Hildebrand) Can one show the asymptotic relation [\(3.1\)](#page-2-0) fails for $y \leq (\log x)^{2-\epsilon}$?
- 2. (Pomerance) Is it true that $\Psi(x, y) \ge x\rho(u)$ for all $x/2 \ge y \ge 2$? (Intuition: for very large y, there is a lower order term in $\Psi(x, y) - x\rho(u)$, found by de Bruijn, which is positive. Moreover, $x\rho(u) \leq \Psi(x, y)$ for $y \leq \log x$ trivially since $\Psi(x, y) \geq 1$, $x \rho(u) < 1$.

Theorem 3.1 (G., 2022). Fix $\varepsilon > 0$. Unconditionally, there are sequences $x_n, y_n \to \infty$ such that

$$
y_n = (\log x_n)^{2 - \varepsilon + o(1)}
$$

and

$$
\frac{\Psi(x_n, y_n)}{x_n \rho(\log x_n / \log y_n)} = \exp((\log x_n)^{\varepsilon + o(1)}).
$$

Theorem 3.2 (G., 2022). Under RH, for $(\log x)^{1+\epsilon} \leq y \leq (\log x)^{2-\epsilon}$ we have

$$
\frac{\Psi(x,y)}{x\rho(\log x/\log y)} = \exp\left(\Theta\left(\frac{(\log x)^2}{y\log y}\right)\right).
$$

An analogue of Theorem [3.2](#page-2-1) holds unconditionally for polynomials. Here $\Theta(f)$ stands for a function g such that $C \geq g/f \geq c > 0$ for some positive constants C, c .

Theorem 3.3 (G., 2022). 1. Unconditionally, $\Psi(x, y) \geq x\rho(u)$ holds outside of

$$
y \in [\log x \exp((\log \log x)^{3/5-\varepsilon}), \exp((\log \log x)^{5/3+\varepsilon})].
$$

2. Under RH, $\Psi(x, y) \geq x \rho(u)$ holds outside of

$$
y \in [(\log x)^{2-\varepsilon}, (\log x)^{2+\varepsilon}].
$$

3. Assume RH. If $\psi(y) := \sum_{n \le y} \Lambda(n) \sim y$ satisfies $\psi(y) - y = o(\sqrt{y} \log y)$ then $\Psi(x, y) \ge x \rho(u)$ holds for $y \in [(\log x)^{2-\varepsilon}, (\log x)^{2+\varepsilon}]$. Some intuition comes from the relation

$$
\Psi(x,y) \sim x \rho(u) (-\zeta(1/2) \sqrt{2}) \exp\left(\frac{\psi(y)-y}{\sqrt{y} \log y}\right)
$$

for $y = (1 + (\log x)/2)^2$ (RH is used in the derivation of this relation as well).

4. If RH fails, and $\Theta > 1/2$ is the supremum of the real parts of zeros of ζ , then for any $\beta \in (1 - \Theta, \Theta)$ there are sequences x_n, y_n with $y_n = (\log x_n)^{1/(1-\beta)+o(1)}$ such that

$$
\Psi(x_n, y_n) < x_n \rho(\log x_n / \log y_n) \exp(-y_n^{\Theta - \beta - \varepsilon}).
$$

4 First oscillation result

The rest of the talk will concentrate on Theorem [3.1](#page-2-2) and the last part of Theorem [3.3.](#page-2-3)

Let us start with the last part of Theorem $3.3¹$ $3.3¹$ $3.3¹$ Rankin (30s) observed that

$$
\Psi(x, y) \le x^c \zeta(c, y)
$$

for any $c > 0$, where $\zeta(c, y) = \prod_{p \le y} (1 - p^{-c})^{-1}$ is the partial zeta function. The optimal c, that minimizes the RHS, is denoted $\alpha = \alpha(x, y)$:

$$
\Psi(x,y) \le x^{\alpha} \zeta(\alpha, y) = \min_{c>0} x^c \zeta(c, y).
$$

Recall also that

$$
\rho(u) \sim \frac{e^{-\xi(u)u}\hat{\rho}(-\xi(u))}{\sqrt{2\pi u}}.
$$

Our aim is to 'marry' two classical ideas: saddle point analysis and Landau's Oscillation result (the same result that allows one to deduce $\psi(y) - y = \Omega_{\pm}(y^{\Theta - \varepsilon})$.

We introduce

$$
\beta = \beta(x, y) := 1 - \xi(u) / \log y
$$

where $u = \log x / \log y$, which allows us to rewrite

$$
x\rho(u) \sim \frac{x^{\beta}\hat{\rho}(\log y(\beta-1))}{\sqrt{2\pi u}}.
$$

Now let's divide $\Psi(x, y)$ by $x \rho(u)$:

$$
\frac{\Psi(x,y)}{x\rho(u)} \ll \sqrt{u} \frac{x^{\alpha} \zeta(\alpha, y)}{x^{\beta} \hat{\rho}(\log y(\beta - 1))}.
$$

Here is a trivial (but new) observation. Since α minimizes the numerator we trivially have

$$
\frac{\Psi(x,y)}{x\rho(u)} \ll \sqrt{u} \frac{x^{\beta} \zeta(\beta,y)}{x^{\beta} \hat{\rho}(-\xi(u))} = \sqrt{u} \frac{\zeta(\beta,y)}{\hat{\rho}(-\xi(u))}.
$$

Letting

$$
F(s, y) := \log \zeta(s, y) - \log \hat{\rho}(\log y(s - 1)),
$$

we see

$$
\frac{\Psi(x,y)}{x\rho(u)} \ll \sqrt{u}e^{F(\beta,y)}.
$$

By an earlier computation,

$$
\log \hat{\rho}(\log y(s-1)) = \gamma + I((1-s)\log y).
$$

As for $\log \zeta(s, y)$, we find

$$
\log \zeta(s, y) = \sum_{p \le y} -\log(1 - p^{-s}) = \sum_{n \le y} \frac{\Lambda(n)}{n^s \log n} + o(1)
$$

if $s \geq 1/2 + \varepsilon$. The $o(1)$ terms come from proper prime powers. Since $\beta = 1 - \xi(u)/\log y \approx 1 - \log u/\log y$, we certainly have $s \geq 1/2 + \varepsilon$ if $y \geq (\log x)^{2+\varepsilon}$.

In summary: we want to show

$$
\sum_{n\leq y} \frac{\Lambda(n)}{n^{\beta} \log n} - I((1-\beta) \log y)
$$

¹For simplicity we shall assume $\sigma \in (1/2, \Theta)$ (instead of $\sigma \in (1-\Theta, \Theta)$), and concentrate on $y \geq (\log x)^{2+\epsilon}$.

can be 'very' negative if RH fails. Strategy: we fix $\beta \in (1/2, 1)$, namely require $1 - \xi(u)/\log y = \beta$, which is easy to solve:

$$
\xi(u) = \log y(1 - \beta) \implies
$$

$$
e^{\xi(u)} = 1 + u\xi(u) = y^{1-\beta}
$$

and

$$
1 + u\xi(u) = 1 + u\log y(1 - \beta)
$$

so

$$
1 + \log x (1 - \beta) = y^{1 - \beta}
$$

i.e.

$$
y = (1 + \log(1 - \beta))^{1/(1 - \beta)}.
$$

Given a function $A(x)$ on $x \geq 1$, its Mellin transform is

$$
\mathcal{M}A(s) := \int_1^\infty A(x)x^{-s}ds.
$$

Landau proved the following.

Theorem 4.1. Suppose $A(x)$ is a bounded integrable function on every interval $[1, X]$, which is eventually non-negative. Let σ_c be the infimum of σ such that $MA(\sigma)$ converges. Then $MA(s)$ is analytic in $\Re(s) > \sigma_c$ but not at $s = \sigma_c$.

To illustrate, let us revisit the proof that $\psi(x) - x < -x^{\Theta-\varepsilon}$ holds infinitely often, where Θ is as before. Consider $A(x) = \sum_{n \leq x} \Lambda(n) - x + x^{\Theta-\varepsilon}$. Let us suppose $A(x)$ is eventually positive. Not hard to show

$$
\mathcal{M}A(s) = -\frac{\zeta'(s-1)}{(s-1)\zeta(s-1)} - \frac{1}{s-2} + \frac{1}{s-1-\Theta+\varepsilon}.
$$

This function is analytic for real $s > 1 + \Theta - \varepsilon$, but is not analytic at $s = 1 + \Theta - \varepsilon$. Hence, by Landau, $\mathcal{M}A(s)$ is analytic in the half-plane $\Re(s) > 1 + \Theta - \varepsilon$. But this is false – it is only analytic in $\Re(s) > 1 + \Theta$ due to zeros with real part $> \Theta - \varepsilon$ for any $\varepsilon > 0$; contradiction.

Another example: Diamond and Pintz (2009) showed

$$
\sum_{n \le x} \frac{\Lambda(n)}{n \log n} - \log \log x - \gamma < -\frac{C}{\sqrt{x} \log x}
$$

holds infinitely often for any given $C > 0$, and same with $\frac{\partial C}{\partial x \log x}$. This shows that \sqrt{x} ($\prod_{p \leq x}$ (1 – $1/p$ ⁻¹ – $e^{\gamma} \log x$) exhibits arbitrarily large positive and negative values as $x \to \infty$. They studied the Mellin transform of the LHS.

An almost identical argument works for showing

$$
y \mapsto \sum_{n \le y} \frac{\Lambda(n)}{n^{\beta} \log n} - I((1 - \beta) \log y) \le -y^{\Theta - \beta - \varepsilon}
$$

holds infinitely often.

We conclude that if RH fails, and $\Theta > 1/2$ is the supremum of the real parts of zeros of ζ , then for any $\beta \in (1/2, \Theta)$ there are sequences x_n, y_n with $y_n = (\log x_n)^{1/(1-\beta)+o(1)}$ such that

$$
\Psi(x_n, y_n) < x_n \rho(\log x_n / \log y_n) \exp(-y_n^{\Theta - \beta - \varepsilon}).
$$

If RH holds, $\Theta - \beta = 1/2 - \beta < 0$ so this is useless.

Remark 4.1. Under RH we can show that $\Psi(x, y) \sim x\rho(u)F(\beta, y)$ holds for $y \geq (\log x)^{3/2+\epsilon}$ and this range is optimal. A similar result holds for polynomials over finite fields, unconditionally.

5 Second oscillation result

Finally, let us turn to Theorem [3.1.](#page-2-2) We assume $y \leq (\log x)^{2-\epsilon}$, so that $\beta \leq 1/2 - \epsilon$ (and also $\alpha \leq 1/2 - \epsilon$: it is known that $\alpha = \beta + O(1/\log y)$.

We have seen

$$
\frac{\Psi(x,y)}{x\rho(u)} \ll \sqrt{u} \frac{x^{\alpha} \zeta(\alpha,y)}{x^{\beta} \hat{\rho}(-\xi(u))} \ll \sqrt{u} \frac{x^{\beta} \zeta(\beta,y)}{x^{\beta} \hat{\rho}(-\xi(u))} = \sqrt{u} \frac{\zeta(\beta,y)}{\hat{\rho}(-\xi(u))}.
$$

This used $\Psi(x, y) \leq x^{\alpha} \zeta(\alpha, y)$. We also have $\Psi(x, y) \gg x^{\alpha} \zeta(\alpha, y) / (\sqrt{u} \log y)$ (Hildebrand and Tenenbaum, 80s) if $y \geq (\log x)^{1+\varepsilon}$, so

$$
\frac{\Psi(x,y)}{x\rho(u)} \gg \frac{x^{\alpha}\zeta(\alpha,y)}{x^{\beta}\hat{\rho}(-\xi(u))\log y} \ge \frac{x^{\alpha}\zeta(\alpha,y)}{x^{\alpha}\hat{\rho}((1-\alpha)\log y)\log y} = \frac{\zeta(\alpha,y)}{\hat{\rho}((1-\alpha)\log y)\log y}.
$$

The second inequality is trivial (but new): it uses the fact that β minimizes $s \mapsto x^s \hat{\rho}((1-s) \log y)$. Recall

$$
F(s, y) = \log \zeta(s, y) - \log \hat{\rho}(\log y(s - 1)).
$$

We have just shown

$$
\frac{\Psi(x,y)}{x\rho(u)} \gg e^{F(\alpha,y)}/\log y.
$$

Unconditionally, Landau's Theorem shows that, if we fix $\alpha > 0$,

$$
y \mapsto \sum_{n \le y} \frac{\Lambda(n)}{n^{\alpha} \log n} - I((1 - \alpha) \log y)
$$

is non-negative. When $y \leq (\log x)^{2-\varepsilon}$ we have that $\log F(\alpha, y)$ is larger than $\sum_{n \leq y} \frac{\Lambda(n)}{n^{\alpha} \log n}$ by a very large quantity, leading to large values of $\Psi(x, y)/(x \rho(u))$. Indeed,

$$
\log \zeta(s,y) = \sum_{p \le y} -\log(1-p^{-s}) = \sum_{n \le y} \frac{\Lambda(n)}{n^s \log n} + \sum_{k \ge 2} \sum_{y^{1/k} < p \le y} p^{-ks}/k.
$$

The k-sum can easily be shown to tend to infinity when $s \leq 1/2 - \varepsilon$ (this uses nothing more than the Prime Number Theorem), which is the case when $s = \alpha$ and $y \leq (\log x)^{2-\epsilon}$.