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Definition

This talk will be about sums of two squares – integers that can
be expressed as a sum of two perfect squares:

1, 2,4, 5, 8,9, 10,13, 16, 17,18, 20, 25, . . .

The first part of the talk will concern their asymptotic count.
The second part will concern more refined questions on their
distribution.
Throughout we shall compare their behavior to primes.
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Motivation

Sums of two squares are studied from various angles:
1 Representation of integers in terms of values of a

quadratic form.
2 Norms of elements from number fields.
3 Multiplicative structure: b(n) = 1n=□+□ is a multiplicative

function.
4 Mathematical physics.
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Characterization

Let b : N→ {0, 1} be the indicator of sums of two squares. It is
known that b is multiplicative (Fermat, Euler).
Moreover, if p ≡ 1 mod 4 or p = 2 then b(pk ) = 1 for all k . If
p ≡ 3 mod 4 then b(pk ) = 1 if and only if k is even.
Proof consists of three facts:

1 A product of sums of two squares is a sum of two squares:
(a2 + b2)(c2 + d2) = (ac − bd)2 + (ad + bc)2.

2 If p ≡ 3 mod 4 divides a sum of two squares then it divides
it exactly an even number of times.

3 p ≡ 1 mod 4 implies p is a sum of two squares – Geometry
of numbers.
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Asymptotics (I)

Landau (1908):
∑

n≤x b(n) ∼ K x√
log x as x →∞. Here

K =
1√
2

∏
p≡3 mod 4

(
1− 1

p2

)−1/2

≈ 0.764

Landau established an asymptotic expansion in powers of
1/ log x . In 1913, Ramanujan independently discovered this
asymptotic formula (‘Landau–Ramanujan constant’).
Landau’s proof uses complex analysis, zero-free region of ζ(s)
and L(s, χ−4) and Hankel contours.
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Asymptotics (II)

Different proofs of
∑

n≤x b(n) ∼ K x√
log x :

1 Wirsing (1961): main term under
∑

p≤x b(p) ∼ 1
2

x
log x .

2 Wirsing (1967): main term under
∑

p≤x
b(p)

p ∼ 1
2 log log x .

3 Selberg (1969): main term.
4 Iwaniec (1976): results in short intervals (H = x1−o(1)) and

arithmetic progressions (q = xo(1)) using the
half-dimensional sieve.
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Accurate main term (I)

Let F (s) =
∑

n b(n)/ns. It has an Euler product:

F (s) = (1− 2−s)−1
∏

p≡1 mod 4

(1− p−s)−1
∏

p≡3 mod 4

(1− p−2s)−1.

Identity (Shanks, 1964):

F (s) =
√
ζ(s)L(s, χ−4)(1− 2−s)−1G(s)

for

G(s) =
∏
k≥1

(
(1− 2−2k s)ζ(2ks)

L(2ks, χ−4)

)2−k−1

.

Note that G converges absolutely for ℜs > 1/2. In this notation,

K =
G(1)√

2
.
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Accurate main term (II)

By Perron’s formula,∑
n≤x

b(n) =
1

2πi

∫
(2)

F (s)
xs

s
ds.

Since F has essential singularity in s = 1 due to
√
ζ(s), main

term does not come from a residue, but rather from an integral:

M(x) =
1
π

∫ 1

1/2

xs

(1− s)1/2s
f (s)ds, f (s) = F (s)(s − 1)1/2.

For this main term,∑
n≤x

b(n) = M(x) + O(x exp(−C
√
log x)).
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Accurate main term (III)

With the last main term, M. Radziejewski proved (2014):∑
n≤x

b(n)−M(x)

oscillates (takes negative and positive values of order
x1/2/(log x)2 infinitely often). Similar to the classical results on
the error term ∑

p≤x

1−
∫ x

2

dt
log t

which changes sign infinitely often. Under GRH,∑
n≤x

b(n)−M(x) = O(x1/2+ε),

similarly to the RH result
∑

p≤x 1 =
∫ x

2
dt

log t + O(x1/2+ε).
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Definition

Let q be an odd prime power, and let Fq be the finite field of
size q.
The polynomial ring Fq[T ] shares many properties with the ring
of integers Z. An analogue of sums of two squares of integers
is A2 + TB2:

a2 + b2 = NmQ(i)/Q(a + ib),

A2 + TB2 = NmFq(
√
−T )/Fq(T )(A +

√
−TB)

Let bq : Fq[T ]→ {0,1} be the indicator of A2 + TB2, and set

Bq(n) =
∑

f∈Fq [T ], f monic, deg f=n

bq(f ).
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Large-q, or large-n

Theorem (Bary-Soroker, Smilansky and Wolf, 2015)
We have

Bq(n) = qn

(2n
n

)
4n + On(qn−1), q →∞.

Bq(n) = Kq
qn
√
πn

+ Oq

(
qn

n3/2

)
, n→∞,

where

Kq = (1− q−1)−
1
2

∏
P: (P/T )=−1

(1− |P|−2)−
1
2 .

Results are consistent:

lim
n→∞

lim
q→∞

Bq(n)
qn/
√
πn

= lim
q→∞

lim
n→∞

Bq(n)
qn/
√
πn

= 1.
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Uniform theorem

Theorem 1 (G., 2016)
We have

Bq(n) = Kq · qn ·
(2n

n

)
4n

(
1 + O

(
1

qn

))
with an absolute implied constant.
Moreover, Bq is a polynomial in q of degree n, and Kq is an
analytic function of 1/q.

Proof avoids complex analysis.
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Twisted sums

Q1: Fix a nonprincipal Dirichlet character χ mod q. What
can one say about the distribution of∑

n≤x

b(n)χ(n)

for ‘random’ x?
Q2: Let χ be a Dirichlet character chosen uniformly at
random from the group of ϕ(q) Dirichlet characters modulo
q. What can one say about the distribution of∑

n≤x

b(n)χ(n) ?

One may ask similar questions replacing χ(n) with nit (with
either t fixed, or random t ∈ [1,T ]).
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Short sums

Q3: What can be said about the distribution of∑
n≤x , n≡a mod q

b(n)

for random a ∈ (Z/qZ)×? Or∑
x≤n<x+H

b(n)

for random x ∈ [X , 2X ]?
Here q and H should be thought of as functions of x ,
e.g. q ≍ x1−δ or H ≍ xδ.
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It will be instructive to consider these questions for b replaced
by the indicator of primes 1P , or the von Mangoldt function Λ.
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Von Mangoldt and primes

Suppose we want to understand the difference

π(x ; 4, 3)− π(x ; 4, 1).

It is the same as
−
∑
p≤x

χ−4(p).

We have ∑
n≤x

Λ(n)χ−4(n) = −
∑

ρ: L(ρ,χ−4)=0

xρ

ρ
.

By integration by parts,∑
p≤x

χ−4(p) =
∑
n≤x

χ−4(n)
Λ(n)
log n

−
∑
p2≤x

χ−4(p2)

2
+ O(x1/3)

≈ 1
log x

∑
n≤x

Λ(n)χ−4(n)−
1
2
π(
√

x).
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Almost-periodic functions

Under GRH, if we combine last formulas then

(π(et ; 4,3)− π(et ; 4,1))
t

et/2 ≈
∑

L(1/2+iγ,χ−4)=0

eitγ

1/2 + iγ
+ 1.

The left-hand side is a almost periodic function, meaning: it
lives in the closure of the space of trigonometric polynomials.
Ultimately, bias comes from squares of primes.

Linear Independence Hypothesis (LI):
{γ > 0 : L(1/2 + iγ, χ−4) = 0} are linearly independent over Q.
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Rubinstein–Sarnak

Theorem (Rubinstein–Sarnak, 1993)
Assume GRH and LI for L(s, χ−4). Then for any nice function f ,

1
logX

∫ X

1
f
(
(π(t ; 4,3)− π(t ; 4, 1))

log t√
t

)
dt
t
→
∫
R

f dµ

for some absolutely continuous, symmetric measure µ.
Moreover, µ((0,∞)) = 0.9959.... Limit can also be written as

1
logX

∫ logX

0
f
(
(π(ev ; 4,3)− π(ev ; 4,1))

v
ev/2

)
dv →

∫
R

f dµ
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Sums of squares bias - integers

Theorem 2 (G., 2023)
Assume GRH. We have∑

n≤x
n≡1 mod 3

b(n)−
∑
n≤x

n≡2 mod 3

b(n) = M(x) + E(x),

M(x) ∼ A
√

x
log3/4 x

,
1
X

∫ 2X

X
E2(x)dx ≪ X

log5/2 X

for some positive A > 0. In particular, we almost always have∑
n≤x

n≡1 mod 3

b(n) >
∑
n≤x

n≡2 mod 3

b(n).
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Sums of squares bias - polynomials

Assume q is odd and let Sq be the set of monic polynomials of
the shape A2 + TB2.

Theorem 3 (G., 2025+)
We have ∑

f∈Sq
deg f=n

χ(f )≪χ
qn/2

n5/4

if χ is a complex character. If χ is real,

∑
f∈Sq

deg f=n

χ(f ) =
qn/2

n3/4 (Cχ,n mod 2 + o(1)).
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Main idea

Let F (s, χ) =
∑

n b(n)χ(n)/ns. One has

F (s, χ) ≈
√

L(s, χ)L(s, χχ−4)
4

√
L(2s, χ2)

L(2s, χ2χ−4)
.

Different behavior at s = 1/2, depending on χ being real or not.
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Primes

Let q be a prime. For a random Dirichlet character χ mod q,

Eχ|
∑
p≤x

χ(p)|2k

#{(p1, . . . ,pk , q1, . . . ,qk ) :
∏

pi ≡
∏

qj mod q, q ̸= pi , qj ≤ x}.

If q > xk this is easy to evaluate:

Eχ|
∑
p≤x

χ(p)|2k ∼ k !π(x)k .

In particular, ∑
p≤x χ(p)√
π(x)

d−−−→
x→∞

CN(0, 1)

if log q/ log x →∞, where χ is random modulo q.
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Random multiplicative functions

Understanding
∑

p≤x χ(p) becomes easier if we replace the
random χ with a random multiplicative function:

n =
∏

pei
i =⇒ α(n) =

∏
α(pi)

ei

and

(α(p))p are i.i.d random variables, uniformly distributed on S1.

We have the following orthogonality relation:

Eα(n)α(m) = δn,m.

With this set-up:
E|
∑

p≤x α(p)|2k = #{(p1, . . . ,pk , q1, . . . ,qk ) :
∏

pi =∏
qj , pi , qj ≤ x} ∼ πk (x)xk as x →∞,

By CLT, ∑
p≤x α(p)√
π(x)

d−−−→
x→∞

CN(0, 1).
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Back to sums of squares

Consider

Sx =

∑
n≤x b(n)α(n)√∑

n≤x b(n)
.

Theorem 4 (G.–Mo Dick Wong, 2025)
We have

Sx
d−−−→

x→∞
G ·
√

V ,

where G ∼ CN(0, 1) and V is independent of G. Moreover, V is
almost surely positive and finite, and satisfies

EV p <∞←→ p < 2.
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Now let’s get back to the prime sum with a random character.
Recall ∑

p≤x χ(p)√
π(x)

d−−−→
x→∞

CN(0, 1)

if log q/ log x →∞, where χ is random character modulo q.
Conjecture based on random matrix theory and function fields:

(⋆)Eχ0 ̸=χ mod q|
∑
p≤x

χ(p)|2 ∼ π(x)
logmin{x , q}

log x

for q ≥ xε. (⋆) lies extremely deep: it is morally equivalent to
Pair Correlation Conjecture for Dirichlet L-functions.
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What about distribution of∑
n≤x b(n)χ(n)√∑

n≤x b(n)

for random χ mod q? Currently only solved if χ is replaced by a
random multiplicative function. Leads to the following question:

Eχ0 ̸=χ mod q

∣∣∣∣∣∣
∑

n≤x b(n)χ(n)√∑
n≤x b(n)

∣∣∣∣∣∣
2

∼ ???

May conjecture: if q = xc ,∑
n≤x b(n)χ(n)√∑

n≤x b(n)

d−−−→
x→∞

G ·
√

Vc

for G ∼ CN(0, 1). No guess for Vc .
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More motivation for variance

By orthogonality,

1
(q − 1)2

∑
χ0 ̸=χ mod q

|
∑
p≤x

χ(p)|2 =
1

q − 1

q−1∑
a=1

(
∑
p≤x

p≡a mod q

1− 1
q − 1

Li(x))2.

RHS is known as variance of primes in APs. So (⋆) is
equivalent to:

Var(π(x ; •, q)) ∼ π(x)
q − 1

log q
log x

for x ≥ q ≥ xε. Related to Hooley’s conjecture. Consistent with
Barban–Davenport–Halberstam(–Montgomery–Hooley)
Theorem.
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Variance in function fields

Similarly,

1
(q − 1)2

∑
χ0 ̸=χ mod q

|
∑
n≤x

b(n)χ(n)|2

=
1

q − 1

q−1∑
a=1

(
∑
n≤x

n≡a mod q

b(n)−
∑

n≤x , (n,q)=1 b(n)

q − 1
)2.

Theorem 5 (G.-Rodgers, 2020)
Informal statement: in function fields, exists positive G s.t.

(
∑
n≤x

b(n))−1Eχ0 ̸=χ mod q|
∑
n≤x

b(n)χ(n)|2 ∼ G(log q/ log x).

Leads to a precise conjecture in integers.
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Short sums for primes

The sum
∑

p≤x , p≡a mod q 1− Li(x)/(q − 1) for random
(a, q) = 1 is expected to tend to Gaussian after normalization
by standard deviation, for q = o(x/ log x).
Computing variance is equivalent to computing∑

χ0 ̸=χ mod q |
∑

p≤x χ(p)|2.

Similarly,
∑

x<p≤x+H 1−
∫ x+H

x
dt

log t expected to tend to
Gaussian after normalization, for H/ log x →∞; established via
moments by Montgomery–Soundararajan (conditionally).
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Short sums for sums of two squares

The distribution of
∑

n≤x , n≡a mod q b(n)− 1
q−1

∑
n≤x , (n,q)=1 b(n)

for random (a, q) = 1 is expected to tend to Gaussian if
q = o(x/

√
log x), after normalization by standard deviation.

Computing variance is equivalent to computing∑
χ0 ̸=χ mod q |

∑
n≤x b(n)χ(n)|2 for which Brad and I gave a

conjecture.
Same story expected for

∑
x<n≤x+H b(n)− (M(x + H)−M(x))

if H/
√
log x →∞.

Freiberg–Kurlberg–Rosenzweig (2017) proved Poisson
behavior for

∑
x<n≤x+H b(n) when H ∼ λ

√
log x via moments

(conditionally).
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Happy Birthday Pieter!

60 + 1 = 52 + 62
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