	On t	he distribu	ition of sur	ns of two so	quares
	TECHNION Israel Institute of Technology				
00000	00000	000	000	000000	0000000000

Ofir Gorodetsky, Technion

Asymptotic Counting and *L*-Functions Max Planck Institute for Mathematics May 8, 2025

Based on joint works with Brad Rodgers (Queen's University) and Mo Dick Wong (Durham University).

Overview ●0000000	Function fields	Main questions	Chebyshev's bias	Random-character sums
Definition				

This talk will be about sums of two squares – integers that can be expressed as a sum of two perfect squares:

 $1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, \ldots$

The first part of the talk will concern their asymptotic count. The second part will concern more refined questions on their distribution.

Throughout we shall compare their behavior to primes.

Overview o●oooooo	Function fields	Main questions	Chebyshev's bias	Random-character sums
Motivation	1			

Sums of two squares are studied from various angles:

- Representation of integers in terms of values of a quadratic form.
- Orms of elements from number fields.
- Multiplicative structure: $b(n) = \mathbf{1}_{n=\Box+\Box}$ is a multiplicative function.
- Mathematical physics.

Let $b: \mathbb{N} \to \{0, 1\}$ be the indicator of sums of two squares. It is known that *b* is multiplicative (Fermat, Euler). Moreover, if $p \equiv 1 \mod 4$ or p = 2 then $b(p^k) = 1$ for all *k*. If $p \equiv 3 \mod 4$ then $b(p^k) = 1$ if and only if *k* is even. Proof consists of three facts:

- A product of sums of two squares is a sum of two squares: $(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2.$
- If $p \equiv 3 \mod 4$ divides a sum of two squares then it divides it exactly an even number of times.
- $p \equiv 1 \mod 4$ implies *p* is a sum of two squares Geometry of numbers.

andau (1908):
$$\sum_{n \le x} b(n) \sim K \frac{x}{\sqrt{\log x}}$$
 as $x \to \infty$. Here
$$K = \frac{1}{\sqrt{2}} \prod_{p \equiv 3 \mod 4} \left(1 - \frac{1}{p^2}\right)^{-1/2} \approx 0.764$$

Landau established an asymptotic expansion in powers of $1/\log x$. In 1913, Ramanujan independently discovered this asymptotic formula ('Landau–Ramanujan constant'). Landau's proof uses complex analysis, zero-free region of $\zeta(s)$ and $L(s, \chi_{-4})$ and Hankel contours.

Overview oooo●ooo	Function fields	Main questions	Chebyshev's bias	Random-character sums		
Asymptotics (II)						

Different proofs of $\sum_{n \leq x} b(n) \sim K \frac{x}{\sqrt{\log x}}$:

- Wirsing (1961): main term under $\sum_{p \le x} b(p) \sim \frac{1}{2} \frac{x}{\log x}$.
- 2 Wirsing (1967): main term under $\sum_{p \le x} \frac{b(p)}{p} \sim \frac{1}{2} \log \log x$.
- Selberg (1969): main term.
- Iwaniec (1976): results in short intervals ($H = x^{1-o(1)}$) and arithmetic progressions ($q = x^{o(1)}$) using the half-dimensional sieve.

Overview ○○○○○●○○	Function fields	Main questions	Chebyshev's bias	Random-character sums

Accurate main term (I)

Let $F(s) = \sum_{n} b(n)/n^{s}$. It has an Euler product:

$$F(s) = (1 - 2^{-s})^{-1} \prod_{p \equiv 1 \mod 4} (1 - p^{-s})^{-1} \prod_{p \equiv 3 \mod 4} (1 - p^{-2s})^{-1}$$

Identity (Shanks, 1964):

$$F(s) = \sqrt{\zeta(s)L(s,\chi_{-4})(1-2^{-s})^{-1}}G(s)$$

for

$$G(s) = \prod_{k \ge 1} \left(rac{(1-2^{-2^k s})\zeta(2^k s)}{L(2^k s, \chi_{-4})}
ight)^{2^{-k-1}}$$

.

Note that *G* converges absolutely for $\Re s > 1/2$. In this notation,

$$K=\frac{G(1)}{\sqrt{2}}.$$

Overview ○○○○○○●○	Function fields	Main questions	Chebyshev's bias	Random-character sums		
Accurate main term (II)						

By Perron's formula,

$$\sum_{n\leq x} b(n) = \frac{1}{2\pi i} \int_{(2)} F(s) \frac{x^s}{s} \mathrm{d}s.$$

Since *F* has essential singularity in s = 1 due to $\sqrt{\zeta(s)}$, main term does not come from a residue, but rather from an integral:

$$M(x) = \frac{1}{\pi} \int_{1/2}^{1} \frac{x^s}{(1-s)^{1/2}s} f(s) \mathrm{d}s, \qquad f(s) = F(s)(s-1)^{1/2}.$$

For this main term,

$$\sum_{n\leq x} b(n) = M(x) + O(x \exp(-C\sqrt{\log x})).$$

Overview 0000000	Function fields	Main questions	Chebyshev's bias	Random-character sums

Accurate main term (III)

With the last main term, M. Radziejewski proved (2014):

$$\sum_{n\leq x}b(n)-M(x)$$

oscillates (takes negative and positive values of order $x^{1/2}/(\log x)^2$ infinitely often). Similar to the classical results on the error term

$$\sum_{0 \le x} 1 - \int_2^x \frac{\mathrm{d}t}{\log t}$$

which changes sign infinitely often. Under GRH,

$$\sum_{n\leq x}b(n)-M(x)=O(x^{1/2+\varepsilon}),$$

similarly to the RH result $\sum_{p \le x} 1 = \int_2^x \frac{\mathrm{d}t}{\log t} + O(x^{1/2 + \varepsilon}).$

Overview	Function fields	Main questions	Chebyshev's bias	Random-character sums
00000000	●oo	000	000000	
Definitio	n			

Let *q* be an odd prime power, and let \mathbb{F}_q be the finite field of size *q*.

The polynomial ring $\mathbb{F}_q[T]$ shares many properties with the ring of integers \mathbb{Z} . An analogue of sums of two squares of integers is $A^2 + TB^2$:

$$\begin{aligned} a^2 + b^2 &= \operatorname{Nm}_{\mathbb{Q}(i)/\mathbb{Q}}(a + ib), \\ A^2 + TB^2 &= \operatorname{Nm}_{\mathbb{F}_q(\sqrt{-T})/\mathbb{F}_q(T)}(A + \sqrt{-T}B) \end{aligned}$$

Let $b_q \colon \mathbb{F}_q[T] \to \{0, 1\}$ be the indicator of $A^2 + TB^2$, and set

$$B_q(n) = \sum_{f \in \mathbb{F}_q[T], f \text{ monic, deg } f=n} b_q(f).$$

Overview 00000000	Function fields	Main questions	Chebyshev's bias	Random-character sum

Large-q, or large-n

Theorem (Bary-Soroker, Smilansky and Wolf, 2015)

We have

$$egin{aligned} B_q(n) &= q^n rac{\binom{2n}{n}}{4^n} + O_n(q^{n-1}), \qquad q o \infty. \ B_q(n) &= \mathcal{K}_q rac{q^n}{\sqrt{\pi n}} + O_q\left(rac{q^n}{n^{3/2}}
ight), \qquad n o \infty \end{aligned}$$

where

$$K_q = (1 - q^{-1})^{-\frac{1}{2}} \prod_{P: (P/T) = -1} (1 - |P|^{-2})^{-\frac{1}{2}}.$$

Results are consistent:

$$\lim_{n\to\infty}\lim_{q\to\infty}\frac{B_q(n)}{q^n/\sqrt{\pi n}}=\lim_{q\to\infty}\lim_{n\to\infty}\frac{B_q(n)}{q^n/\sqrt{\pi n}}=1.$$

Overview 00000000	Function fields ○○●	Main questions	Chebyshev's bias	Random-character sums		
Uniform theorem						

Theorem 1 (G., 2016)

We have

$$B_q(n) = K_q \cdot q^n \cdot \frac{\binom{2n}{n}}{4^n} \left(1 + O\left(\frac{1}{qn}\right)\right)$$

with an absolute implied constant. Moreover, B_q is a polynomial in q of degree n, and K_q is an analytic function of 1/q.

Proof avoids complex analysis.

Overview 00000000	Function fields	Main questions ●○○	Chebyshev's bias	Random-character sums	
Twisted sums					

• Q1: Fix a nonprincipal Dirichlet character $\chi \mod q$. What can one say about the distribution of

$$\sum_{n\leq x}b(n)\chi(n)$$

for 'random' x?

 Q2: Let χ be a Dirichlet character chosen uniformly at random from the group of φ(q) Dirichlet characters modulo q. What can one say about the distribution of

$$\sum_{n\leq x}b(n)\chi(n)?$$

One may ask similar questions replacing $\chi(n)$ with n^{it} (with either *t* fixed, or random $t \in [1, T]$).

Q3: What can be said about the distribution of

$$\sum_{n \le x, n \equiv a \bmod q} b(n)$$

for random $a \in (\mathbb{Z}/q\mathbb{Z})^{\times}$? Or

$$\sum_{x \le n < x+H} b(n)$$

for random $x \in [X, 2X]$?

Here *q* and *H* should be thought of as functions of *x*, e.g. $q \simeq x^{1-\delta}$ or $H \simeq x^{\delta}$.

Overview 00000000	Function fields	Main questions ○○●	Chebyshev's bias	Random-character sums

It will be instructive to consider these questions for *b* replaced by the indicator of primes $\mathbf{1}_{P}$, or the von Mangoldt function Λ .

Overview 00000000	Function fields	Main questions	Chebyshev's bias ●00000	Random-character sums	
Von Mangoldt and primes					

Suppose we want to understand the difference

$$\pi(x; 4, 3) - \pi(x; 4, 1).$$

It is the same as

$$-\sum_{p\leq x}\chi_{-4}(p).$$

We have

$$\sum_{n\leq x} \Lambda(n)\chi_{-4}(n) = -\sum_{\rho: L(\rho,\chi_{-4})=0} \frac{x^{\rho}}{\rho}$$

٠

By integration by parts,

$$\sum_{p \le x} \chi_{-4}(p) = \sum_{n \le x} \chi_{-4}(n) \frac{\Lambda(n)}{\log n} - \sum_{p^2 \le x} \frac{\chi_{-4}(p^2)}{2} + O(x^{1/3})$$
$$\approx \frac{1}{\log x} \sum_{n \le x} \Lambda(n) \chi_{-4}(n) - \frac{1}{2} \pi(\sqrt{x}).$$

Almost-periodic functions

Under GRH, if we combine last formulas then

$$(\pi(e^t; 4, 3) - \pi(e^t; 4, 1)) \frac{t}{e^{t/2}} \approx \sum_{L(1/2 + i\gamma, \chi_{-4}) = 0} \frac{e^{it\gamma}}{1/2 + i\gamma} + 1.$$

The left-hand side is a *almost periodic function*, meaning: it lives in the closure of the space of trigonometric polynomials. Ultimately, bias comes from squares of primes.

Linear Independence Hypothesis (LI): $\{\gamma > 0 : L(1/2 + i\gamma, \chi_{-4}) = 0\}$ are linearly independent over \mathbb{Q} .

Overview 00000000	Function fields	Main questions	Chebyshev's bias oo●ooo	Random-character sums

Rubinstein–Sarnak

Theorem (Rubinstein–Sarnak, 1993)

Assume GRH and LI for $L(s, \chi_{-4})$. Then for any nice function f,

$$\frac{1}{\log X} \int_1^X f\left((\pi(t;4,3) - \pi(t;4,1))\frac{\log t}{\sqrt{t}}\right) \frac{\mathrm{d}t}{t} \to \int_{\mathbb{R}} f \,\mathrm{d}\mu$$

for some absolutely continuous, symmetric measure μ . Moreover, $\mu((0,\infty)) = 0.9959...$ Limit can also be written as

$$\frac{1}{\log X} \int_0^{\log X} f\left((\pi(\boldsymbol{e}^{\boldsymbol{v}}; \boldsymbol{4}, \boldsymbol{3}) - \pi(\boldsymbol{e}^{\boldsymbol{v}}; \boldsymbol{4}, \boldsymbol{1}))\frac{\boldsymbol{v}}{\boldsymbol{e}^{\boldsymbol{v}/2}}\right) \mathrm{d}\boldsymbol{v} \to \int_{\mathbb{R}} f \,\mathrm{d}\boldsymbol{\mu}$$

Overview 00000000 Function fields

Main questions

Chebyshev's bias

Random-character sums

Sums of squares bias - integers

Theorem 2 (G., 2023)

Assume GRH. We have

$$\sum_{\substack{n \leq x \\ n \equiv 1 \mod 3}} b(n) - \sum_{\substack{n \leq x \\ n \equiv 2 \mod 3}} b(n) = M(x) + E(x),$$
$$M(x) \sim A \frac{\sqrt{x}}{\log^{3/4} x}, \qquad \frac{1}{X} \int_{X}^{2X} E^2(x) \mathrm{d}x \ll \frac{X}{\log^{5/2} X}$$

for some positive A > 0. In particular, we almost always have

$$\sum_{\substack{n \leq x \\ n \equiv 1 \mod 3}} b(n) > \sum_{\substack{n \leq x \\ n \equiv 2 \mod 3}} b(n).$$

Overview 00000000	Function fields	Main questions	Chebyshev's bias ○○○○●○	Random-character sums

Sums of squares bias - polynomials

Assume *q* is odd and let S_q be the set of monic polynomials of the shape $A^2 + TB^2$.

Theorem 3 (G., 2025+)

We have

$$\sum_{\substack{f \in S_q \\ \deg f = n}} \chi(f) \ll_{\chi} \frac{q^{n/2}}{n^{5/4}}$$

if χ is a complex character. If χ is real,

$$\sum_{\substack{f \in S_q \\ \deg f = n}} \chi(f) = \frac{q^{n/2}}{n^{3/4}} (C_{\chi, n \mod 2} + o(1)).$$

Main idea				
Overview 00000000	Function fields	Main questions	Chebyshev's bias ○○○○○●	Random-character sums

Let
$$F(s, \chi) = \sum_{n} b(n)\chi(n)/n^{s}$$
. One has

$$F(\boldsymbol{s},\chi) \approx \sqrt{L(\boldsymbol{s},\chi)L(\boldsymbol{s},\chi\chi_{-4})} \sqrt[4]{\frac{L(2\boldsymbol{s},\chi^2)}{L(2\boldsymbol{s},\chi^2\chi_{-4})}}.$$

Different behavior at s = 1/2, depending on χ being real or not.

Overview	Function fields	Main questions	Chebyshev's bias	Random-character sums
Primes				

Let q be a prime. For a random Dirichlet character $\chi \mod q$,

$$\begin{split} & \mathbb{E}_{\chi} |\sum_{p \leq x} \chi(p)|^{2k} \\ & \#\{(p_1, \dots, p_k, q_1, \dots, q_k) : \prod p_i \equiv \prod q_j \bmod q, \ q \neq p_i, q_j \leq x\}. \end{split}$$

If $q > x^k$ this is easy to evaluate:

$$\mathbb{E}_{\chi}|\sum_{\boldsymbol{p}\leq x}\chi(\boldsymbol{p})|^{2k}\sim k!\pi(x)^{k}.$$

In particular,

$$\frac{\sum_{p \leq x} \chi(p)}{\sqrt{\pi(x)}} \xrightarrow[x \to \infty]{d} CN(0,1)$$

if $\log q / \log x \to \infty$, where χ is random modulo q.

	andom-character sums
--	----------------------

Random multiplicative functions

Understanding $\sum_{p \le x} \chi(p)$ becomes easier if we replace the random χ with a random multiplicative function:

$$n = \prod p_i^{e_i} \implies \alpha(n) = \prod \alpha(p_i)^{e_i}$$

and

 $(\alpha(p))_p$ are i.i.d random variables, uniformly distributed on S^1 . We have the following orthogonality relation:

$$\mathbb{E}\alpha(\mathbf{n})\overline{\alpha}(\mathbf{m})=\delta_{\mathbf{n},\mathbf{m}}.$$

With this set-up:

•
$$\mathbb{E}|\sum_{p\leq x} \alpha(p)|^{2k} = \#\{(p_1,\ldots,p_k,q_1,\ldots,q_k): \prod p_i = \prod q_j, p_i, q_j \leq x\} \sim \pi_k(x)x^k \text{ as } x \to \infty,$$

• By CLT,
 $\frac{\sum_{p\leq x} \alpha(p)}{\sqrt{\pi(x)}} \xrightarrow{d} CN(0,1).$

Overview 00000000	Function fields	Main questions	Chebyshev's bias	Random-character sums

Back to sums of squares

Consider

$$S_x = \frac{\sum_{n \leq x} b(n) \alpha(n)}{\sqrt{\sum_{n \leq x} b(n)}}.$$

Theorem 4 (G.–Mo Dick Wong, 2025)

We have

$$S_x \xrightarrow[x\to\infty]{d} G \cdot \sqrt{V},$$

where $G \sim CN(0,1)$ and V is independent of G. Moreover, V is almost surely positive and finite, and satisfies

$$\mathbb{E}V^{p} < \infty \longleftrightarrow p < 2.$$

Overview 0000000	Function fields	Main questions	Chebyshev's bias	Random-character sums ooo●oooooo

Now let's get back to the prime sum with a random character. Recall

$$\frac{\sum_{p \le x} \chi(p)}{\sqrt{\pi(x)}} \xrightarrow[x \to \infty]{d} CN(0,1)$$

if $\log q / \log x \to \infty$, where χ is random character modulo q. Conjecture based on random matrix theory and function fields:

$$(\star) \mathbb{E}_{\chi_0 \neq \chi \mod q} |\sum_{p \leq x} \chi(p)|^2 \sim \pi(x) \frac{\log \min\{x, q\}}{\log x}$$

for $q \ge x^{\varepsilon}$. (*) lies extremely deep: it is morally equivalent to *Pair Correlation Conjecture for Dirichlet L-functions*.

Overview	Function fields	Main questions	Chebyshev's bias	Random-charac
			000000	0000000000

What about distribution of

$$\frac{\sum_{n \le x} b(n)\chi(n)}{\sqrt{\sum_{n \le x} b(n)}}$$

er sums

for random $\chi \mod q$? Currently only solved if χ is replaced by a random multiplicative function. Leads to the following question:

$$\mathbb{E}_{\chi_0 \neq \chi \mod q} \left| \frac{\sum_{n \leq x} b(n) \chi(n)}{\sqrt{\sum_{n \leq x} b(n)}} \right|^2 \sim ???$$

May conjecture: if $q = x^c$,

$$\frac{\sum_{n \leq x} b(n)\chi(n)}{\sqrt{\sum_{n \leq x} b(n)}} \xrightarrow[x \to \infty]{d} G \cdot \sqrt{V_c}$$

for $G \sim CN(0, 1)$. No guess for V_c .

Overview Fun				Random-character sums
--------------	--	--	--	-----------------------

More motivation for variance

By orthogonality,

$$\frac{1}{(q-1)^2} \sum_{\chi_0 \neq \chi \bmod q} |\sum_{p \leq x} \chi(p)|^2 = \frac{1}{q-1} \sum_{a=1}^{q-1} (\sum_{\substack{p \leq x \\ p \equiv a \bmod q}} 1 - \frac{1}{q-1} \operatorname{Li}(x))^2.$$

RHS is known as *variance of primes in APs.* So (\star) is equivalent to:

$$\operatorname{Var}(\pi(x; \bullet, q)) \sim \frac{\pi(x)}{q-1} \frac{\log q}{\log x}$$

for $x \ge q \ge x^{\varepsilon}$. Related to *Hooley's conjecture*. Consistent with Barban–Davenport–Halberstam(–Montgomery–Hooley) Theorem.

Overview 0000000	Function fields	Main questions	Chebyshev's bias	Random-character sums ○○○○○○●○○○
---------------------	-----------------	----------------	------------------	-------------------------------------

Variance in function fields

Similarly,

$$\frac{1}{(q-1)^2} \sum_{\chi_0 \neq \chi \mod q} |\sum_{n \leq x} b(n)\chi(n)|^2$$

= $\frac{1}{q-1} \sum_{a=1}^{q-1} (\sum_{\substack{n \leq x \\ n \equiv a \mod q}} b(n) - \frac{\sum_{n \leq x, (n,q)=1} b(n)}{q-1})^2.$

Theorem 5 (G.-Rodgers, 2020)

Informal statement: in function fields, exists positive G s.t.

$$(\sum_{n\leq x}b(n))^{-1}\mathbb{E}_{\chi_0\neq\chi \bmod q}|\sum_{n\leq x}b(n)\chi(n)|^2\sim G(\log q/\log x).$$

Leads to a precise conjecture in integers.

Overview 00000000	Function fields	Main questions	Chebyshev's bias	Random-character sums

Short sums for primes

The sum $\sum_{p \leq x, p \equiv a \mod q} 1 - \operatorname{Li}(x)/(q-1)$ for random (a, q) = 1 is expected to tend to Gaussian after normalization by standard deviation, for $q = o(x/\log x)$. Computing variance is equivalent to computing $\sum_{\chi_0 \neq \chi \mod q} |\sum_{p \leq x} \chi(p)|^2$. Similarly, $\sum_{x expected to tend to Gaussian after normalization, for <math>H/\log x \to \infty$; established via moments by Montgomery–Soundararajan (conditionally).

Overview Function fields Main questions Chebyshev's bias Random-character sur 00000000 000 000 000000000 0000000000 000000000000000000000000000000000000					Random-character sums ○○○○○○○●○
--	--	--	--	--	------------------------------------

Short sums for sums of two squares

The distribution of $\sum_{n \le x, n \equiv a \mod q} b(n) - \frac{1}{q-1} \sum_{n \le x, (n,q)=1} b(n)$ for random (a, q) = 1 is expected to tend to Gaussian if $q = o(x/\sqrt{\log x})$, after normalization by standard deviation. Computing variance is equivalent to computing $\sum_{x_n \neq x \mod q} |\sum_{n < x} b(n)\chi(n)|^2$ for which Brad and I gave a conjecture. Same story expected for $\sum_{x < n < x+H} b(n) - (M(x+H) - M(x))$ if $H/\sqrt{\log x} \to \infty$. Freiberg–Kurlberg–Rosenzweig (2017) proved Poisson behavior for $\sum_{x < n < x + H} b(n)$ when $H \sim \lambda \sqrt{\log x}$ via moments (conditionally).

Function fields

Overview

Main questions

Chebyshev's bias

Random-character sums

Happy Birthday Pieter!

$60 + 1 = 5^2 + 6^2$